sign up to email alerts  

    Making Steel

    Overview of the steelmaking process

    Manufacturing steel delivers the goods and services that our societies need – healthcare, telecommunications, improved agricultural practices, better transport networks, clean water and access to reliable and affordable energy. Steel is an alloy based primarily on iron. As iron occurs only as iron oxides in the earth’s crust, the ores must be converted, or ‘reduced’, using carbon. The primary source of this carbon is coking coal.

    Blast furnace steelmaking

    Coking coal is converted to coke by driving off impurities to leave almost pure carbon. The physical properties of coking coal cause the coal to soften, liquefy and then resolidify into hard but porous lumps when heated in the absence of air.

    The blast furnace is fed with the iron ore, coke and small quantities of fluxes (minerals, such as limestone, which are used to collect impurities). Air which is heated to about 1200°C is blown into the furnace through nozzles in the lower section. The air causes the coke to burn, producing carbon monoxide which reacts with the iron ore, as well as heat to melt the iron. Finally, the tap hole at the bottom of the furnace is opened and molten iron and slag (impurities) are drained off.

    Another technology, Pulverised Coal Injection (PCI), involves injecting coal directly into the blast furnace to provide the carbon for iron-making – displacing some of the coke required for the process. A wider range of coals can be used in PCI, including steam coal which has a lower carbon content than coking coal. This method has a number of advantages, including reducing overall costs and prolonging the life of existing coke batteries./p>

    Electric arc furnaces

    The Electric arc furnace process, or mini-mill, does not involve iron-making. It reuses existing steel, avoiding the need for raw materials and their processing. The furnace is charged with steel scrap, it can also include some direct reduced iron (DRI) or pig iron for chemical balance. The EAF operates on the basis of an electrical charge between two electrodes providing the heat for the process. The power is supplied through the electrodes placed in the furnace, which produce an arc of electricity through the scrap steel (around 35 million watts), which raises the temperature to 1600˚C, melting the scrap. Any impurities may be removed through the use of fluxes and draining off slag through the taphole.

    Electric arc furnaces do not use coal as a raw material, but many are reliant on the electricity generated by coal-fired power plant elsewhere in the grid. Around 150 kg of coal are used to produce 1 tonne of steel in electric arc furnaces.